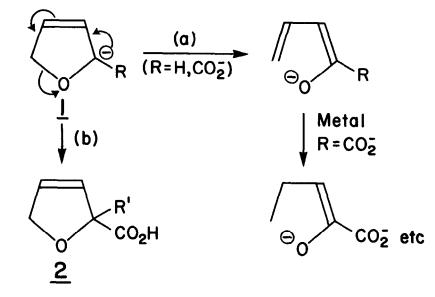
METAL-AMMONIA REDUCTION AND REDUCTIVE ALKYLATION OF 2-FURDIC ACID

Arthur J Birch and Jacob Slobbe

Research School of Chemistry, Australian National University,

P 0 Box 4, Canberra, ACT 2600, Australia


(Received in UK 30 December 1974; accepted for publication 16 January 1975)

The first alkylations of carbanions derived from carboxylate salts were carried out on crotonic, sorbic, phenylacetic and dihydrobenzoic acids using potassamide in ammonia as base ¹. This type of reaction has recently been rediscovered, e.g. 2,3 It was noted¹ that lead tetraacetate oxidations converted efficiently 1-alkyl-1,4-dihydrobenzoic acids into alkyl-benzenes. A convenient method of obtaining the requisite anions from benzoic acids is by direct reaction with a metal in ammonia, ³ rather than by the two-stage process initially used ¹

2-Furoic acid with metal and alcohol in ammonia is reported⁴ to give mixtures of reduction products, including ring-opened compounds Ring-opening may be due to process (a) below, which is known⁵ to occur immediately even at low temperatures with (1, R = H), stabilisation of the carbanion in (1, R = CO_2^{-}) might be expected to enable this to survive to undergo protonation or alkylation Repetition of the reduction of 2-furoic acid,⁴ using lithium and methanol or water as a proton source, confirmed the formation of mixtures containing (2, R' = H) as the main product However, rapid addition of 2-furoic acid to Li (2.5 equivalents) in NH₃ at -78°, followed by NH₄C1 within 3 minutes [process (b)] gave 80% yield of (2, R' = H) in a reasonably pure state It was identified by the pmr spectrum and its cyclohexylamine salt ⁶ The pure product, recovered from the latter, could be sublimed at 0.5 mm Hg (40-60°) and had m.p. 50-54° 7

Addition of an alkyl halide instead of NH₄Cl resulted in conversion of $(1, R = CO_2^{-})$ into (2, R' = alkyl) (Table) accompanied by 10-20% of (2, R' = H), readily separated by its higher water solubility The products were purified through the cyclohexylamine salts and structures confirmed by p m r spectra Oxidation of (2, R' = alkyl) with lead tetraacetate in benzene caused loss of CO_2H and formation of 2-alkylfuran

The procedures can be carried out with 3- or 5-methyl-furoic acid, and some applications in terpenoid synthesis will be discussed. We are grateful to Professor Miwa for a copy of his paper prior to publication.

Table			
Product	Yield*	m p	Cyclohexylamıne Salt
2, R' =			
CH3	75%	41-44 ⁰	192~197 ⁰ (dec)
CH2CH3	75%	liquid	173-176 ⁰ (dec)
CH CH3	95%	66-67 ⁰	179-180 ⁰ (dec.)
CH2 CH CH2	68%	lıquıd	156-158 ⁰ (dec)
CH ₂ Ph	75%	75-76 ⁰	183-188 ⁰ (dec)
	2, R' = CH_3 CH_2CH_3 CH_2CH_3 CH_3 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2CH_3 CH_3 CH_2CH_3 CH_3 CH_2CH_3 CH_3 CH_2CH_3 $CH_$	Product Yield* 2, R' = CH ₃ CH ₂ CH ₃ 75% CH ₂ CH ₃ 75% CH ₂ CH ₃ 95% CH ₂ CH ₂ 68%	Product Yield* m p 2, R' = CH ₃ 75% 41-44° CH ₂ CH ₃ 75% 1iquid CH ₂ CH ₃ 95% 66-67° CH ₂ CH ₂ 68% 1iquid

* Crude isolated yield. No attempt has been made to maximise the yield

REFERENCES

- 1. A.J. Birch, J Chem Soc , 1950, 1551
- P E. Pfeffer, L S Silbert and E Kinsel, Tetrahedron Letters, 1973, 1163, G Cainelli, G Cardillo, M Contento and A. Umani-Ronchi, Gazz Chum. Ital., 1974, 104, 625
- 3 H van Bekkum, C B van der Bosch, G. van Minnen-Pathuis, J C. de Mos and A.M. van Wijk, Rec. Trav. chum., 1971, <u>90</u>, 137
- 4 (a) L Rosenblum, Ph D Thesis, Ohio State University, 1952, as quoted in ref.4(b)
 - (b) T Kinoshita, K Miyano and T Miwa, Bull Soc Chem Japan, submitted for publication (c) T. Kinoshita and T Miwa, Chem Comm., 1974, 181.
- 5 (a) H Kloosterziel, J A A van Drunen and P Galama, Chem Comm., 1969, 885
 (b) V Rautenstrauch, Helv Chum Acta, 1972, <u>55</u>, 594
- 6 I.M Coggiola, Nature, 1963, 200, 954
- 7 Satisfactory analytical results have been obtained for all compounds characterised